我要投稿
  • 您当前的位置:57365.com -> 教学教案 -> 其他教案 -> 初中其他 -> 教案内容
  • [ 收藏本页教案 ]
  • 圆心角、弧、弦、弦心距之间的关系

    教案作者:本站   教案来源:本站整理   教案栏目:初中其他    收藏本页

    第一课时 (一)

    教学目标 :

    (1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

    (2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

    (3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间关系定理的推论.

    难点:从感性到理性的认识,发现、归纳能力的培养.

    教学活动设计

    教学内容设计

    (一)圆的对称性和旋转不变性

    学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

    引出圆心角和弦心距的概念:

    圆心角定义:顶点在圆心的角叫圆心角.

    弦心距定义:从圆心到弦的距离叫做弦心距.

    (二)

    应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

    定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

    (三)剖析定理得出推论

    问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

    举出反例:如图,∠AOB=∠COD,但AB CD, .(强化对定理的理解,培养学生的思维批判性.)

    问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

    推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

    (四)应用、巩固和反思

    例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

    解(略,教材87页)

    例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

    (让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

    练习:(教材88页练习)

    1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:    .

    (1)如果AB=CD,那么______,______,______;

    (2)如果OE=OG,那么______,______,______;

    (3)如果 =,那么______,______,______;

    (4)如果∠AOB=∠COD,那么______,______,______.

    (目的:巩固基础知识)

    2、(教材88页练习3题,略.定理的简单应用)

    (五)小结:学生自己归纳,老师指导.

    知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

    能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

    (六)作业 :教材P99中1(1)、2、3.

    第二课时 (二)

    教学目标 :

    (1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;

    (2)进一步培养学生自学能力,应用能力和计算能力;

    (3)通过例题向学生渗透数形结合能力.

    教学重点、难点:

    重点:圆心角、弧、弦、弦心距之间的相等关系的应用.

    难点:理解1° 弧的概念.

    教学活动设计:


    (一)阅读理解

    学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.

    理解:

    (1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

    (2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

    (3)圆心角的度数和它们对的弧的度数相等.

    (二)概念巩固

    1、判断题:

    (1)等弧的度数相等( );

    (2)圆心角相等所对应的弧相等( );

    (3)两条弧的长度相等,则这两条弧所对应的圆心角相等( )

    2、解得题:

    (1)度数是5°的圆心角所对的弧的度数是多少?为什么?

    (2)5°的圆心角对着多少度的弧? 5°的弧对着多少度的圆心角?

    (3)n°的圆心角对着多少度的弧?  n°的弧对着多少度的圆心角?

    (三)疑难解得

    对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.

    特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.

    (四)应用、归纳、反思

    例1、如图,在⊙O中,弦AB所对的劣弧为圆的 ,圆的半径为2cm,求AB的长.

    学生自主分析,写出解题过程,交流指导.

    解:(参看教材P89)

    注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.

    反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.

    例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB, =40°,求∠BOD的度数.

    题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.

    (解答参考教材P90)

    题目拓展:

    1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证: = .

    2、已知:如上图,已知AB和CD是⊙O的两条直径,弦 = ,求证:CE∥AB.

    目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.

    (五)小节(略)

    (六)作业 :教材P100中4、5题.

    探究活动

    我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD ;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.

    解(略)

    ①AB=CD;

    ② =.(等等)

    我要投稿   -   广告合作   -   关于本站   -   友情连接   -   网站地图   -   联系我们   -   版权声明   -   设为首页   -   加入收藏   -   网站留言
    Copyright © 2009 - 20012 www.www.hxswjs.com All Rights Reserved.57365.com 版权所有