我要投稿
  • 您当前的位置:57365.com -> 教学教案 -> 数学教案 -> 高二数学教案 -> 教案内容
  • [ 收藏本页教案 ]
  • 数学教案-双曲线的几何性质-教学教案

    教案作者:佚名   教案来源:不详   教案栏目:高二数学教案    收藏本页

    §8.4  双曲线的几何性质(第1课时)
    ㈠课时目标 
    1. 熟悉双曲线的几何性质。
    2. 能理解离心率的大小对双曲线形状的影响。
    3. 能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。
    ㈡教学过程
     [情景设置] 
      叙述椭圆 的几何性质,并填写下表:
    方程
    性质         
     

    图像 (略) 
    范围 -a≤x≤a,-b≤y≤b 
    对称性 对称轴、对称中心 
    顶点 (±a,0)、(±b,0) 
    离心率 e= (几何意义)


     [探索研究]
     1.类比椭圆 的几何性质,探讨双曲线 的几何性质:范围、对称性、顶点、离心率。
       双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的定义。
    双曲线与椭圆的几何性质对比如下:
        
    方程
    性质        
     

    图像 (略)  (略)
    范围 -a≤x≤a,-b≤y≤b x≥a,或x≤-a,y∈R
    对称性 对称轴、对称中心 对称轴、对称中心
    顶点 (±a,0)、(±b,0) (-a,0)、(a,0)
    离心率 0<e= <1
    e= >1

    下面继续研究离心率的几何意义:
    (a、b、c、e关系:c2=a2+b2, e= >1)
    2.渐近线的发现与论证
    根据椭圆的上述四个性质,能较为准确地把 画出来吗?(能)
    根据上述双曲线的四个性质,能较为准确地把 画出来吗?(不能)
    通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。
    我们能较为准确地画出曲线y= ,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y= 的渐近线。
    问:双曲线 有没有渐近线呢?若有,又该是怎样的直线呢?
    引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:
    y=± =±
    当x无限增大时, 就无限趋近于零,也就是说,这是双曲线y=±
    与直线y=± 无限接近。
    这使我们猜想直线y=± 为双曲线的渐近线。
    直线y=± 恰好是过实轴端点A1、A2,虚轴端点B1、B2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。
    证法1:如图,设M(x0,y0)为第一象限内双曲线 上的仍一点,则
    y0=  ,M(x0,y0)到渐近线ay-bx=0的距离为:
    ∣MQ∣=  =

                      =   .     
    点M向远处运动, x0随着增大,∣MQ∣就逐渐减小,M点就无限接近于 y=
    故把y=± 叫做双曲线 的渐近线。
    3.离心率的几何意义
    ∵e= ,c>a, ∴e>1由等式c2-a2=b2,可得 = = =
    e越小(接近于1) 越接近于0,双曲线开口越小(扁狭)
     e越大 越大,双曲线开口越大(开阔)
     4.巩固练习
       求下列双曲线的渐近线方程,并画出双曲线。
            ①4x2-y2=4       ②4x2-y2=-4
        已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程
             ①M(4, )   ②M(4, )
    [知识应用与解题研究]
    例 1   求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
    例2    双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)
    ㈣提炼总结
    1. 双曲线的几何性质及a、b、c、e的关系。
    2. 渐近线是双曲线特有的性质,其发现证明蕴含了重要的数学思想与数学方法。
    3. 双曲线的几何性质与椭圆的几何性质类似点和不同点。
                                                         



    数学教案-双曲线的几何性质一文由chinesejy教育网www.www.hxswjs.com搜集整理,版权归作者所有,转载请注明出处!
    我要投稿   -   广告合作   -   关于本站   -   友情连接   -   网站地图   -   联系我们   -   版权声明   -   设为首页   -   加入收藏   -   网站留言
    Copyright © 2009 - 20012 www.www.hxswjs.com All Rights Reserved.57365.com 版权所有